50 research outputs found

    A proposed mechanism for progesterone regulation of trophoblast MMP2 transcription independent of classical progesterone response elements on its promoter

    Get PDF
    BACKGROUND: Progesterone receptor act as ligand-inducible transcription factor in the respective target cells by binding to specific progesterone response elements in the promoter of the target genes. However, despite the lack of the classical progesterone response elements on matrix-metalloproteinase-2 promoter, progesterone has been shown to decrease the activity of this promoter PRESENTATION OF THE HYPOTHESIS: It has recently been suggested that in addition to interacting with their classical co-activators and co-repressors, progesterone receptor are capable of binding to several transcription factors. By interacting with other classes of transcription factors, progesterone receptor is capable of transcriptional activation through the transcription factors cognate DNA binding site. TESTING THE HYPOTHESIS: Exploring transcription factors and transcription binding sites, interacting with the progesterone receptor in modulation of the matrix-metalloproteinase promoter. IMPLICATIONS OF THE HYPOTHESIS: Identification of additional endogenous progesterone target genes makes it possible to further explore the signaling mechanisms by which the hormone regulates biological actions. Furthermore, the concepts of ligand-driven conformational diversity and selective tissue actions can be exploited in the future for drug development which selectively regulate orphan receptors from the nuclear receptor family

    Quantitative and qualitative differences in subcutaneous adipose tissue stores across lipodystrophy types shown by magnetic resonance imaging

    Get PDF
    BACKGROUND: Lipodystrophies are characterized by redistributed subcutaneous fat stores. We previously quantified subcutaneous fat by magnetic resonance imaging (MRI) in the legs of two patients with familial partial lipodystrophy subtypes 2 and 3 (FPLD2 and FPLD3, respectively). We now extend the MRI analysis across the whole body of patients with different forms of lipodystrophy. METHODS: We studied five subcutaneous fat stores (supraclavicular, abdominal, gluteal, thigh and calf) and the abdominal visceral fat stores in 10, 2, 1, 1 and 2 female subjects with, respectively, FPLD2, FPLD3, HIV-related partial lipodystrophy (HIVPL), acquired partial lipodystrophy (APL), congenital generalized lipodystrophy (CGL) and in six normal control subjects. RESULTS: Compared with normal controls, FPLD2 subjects had significantly increased supraclavicular fat, with decreased abdominal, gluteal, thigh and calf subcutaneous fat. FPLD3 subjects had increased supraclavicular and abdominal subcutaneous fat, with less severe reductions in gluteal, thigh and calf fat compared to FPLD2 subjects. The repartitioning of fat in the HIVPL subject closely resembled that of FPLD3 subjects. APL and CGL subjects had reduced upper body, gluteal and thigh subcutaneous fat; the APL subject had increased, while CGL subjects had decreased subcutaneous calf fat. Visceral fat was markedly increased in FPLD2 and APL subjects. CONCLUSION: Semi-automated MRI-based adipose tissue quantification indicates differences between various lipodystrophy types in these studied clinical cases and is a potentially useful tool for extended quantitative phenomic analysis of genetic metabolic disorders. Further studies with a larger sample size are essential for confirming these preliminary findings

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Fluorescent Labeling of SNAP-Tagged Proteins in Cells

    Get PDF
    One of the most prominent self-labeling tags is SNAP-tag. It is an in vitro evolution product of the human DNA repair protein O6 -alkylguanine-DNA alkyltransferase (hAGT) that reacts specifically with benzylguanine (BG) and benzylchloropyrimidine (CP) derivatives, leading to covalent labeling of SNAP-tag with a synthetic probe (Gronemeyer et al., Protein Eng Des Sel 19:309–316, 2006; Curr Opin Biotechnol 16:453–458, 2005; Keppler et al., Nat Biotechnol 21:86–89, 2003; Proc Natl Acad Sci U S A 101:9955– 9959, 2004). SNAP-tag is well suited for the analysis and quantification of fused target protein using fluorescence microscopy techniques. It provides a simple, robust, and versatile approach to the imaging of fusion proteins under a wide range of experimental conditions. © Springer Science+Business Media New York 2015

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    corecore